Accueil du site > Recherche > Séminaires > 2010 > STABLE MULTI-LAYER FLOWS AT LARGE REYNOLDS NUMBERS

STABLE MULTI-LAYER FLOWS AT LARGE REYNOLDS NUMBERS

par Claudine Lylap - 15 décembre 2010

Professor Ian FRIGAARD Departments of Mathematics & Mechanical Engineering University of British Columbia

Lundi 15 Novembre 2010

« STABLE MULTI-LAYER FLOWS AT LARGE REYNOLDS NUMBERS »Parallel multi-layer flow configurations occur in transport, co-extrusion and coating applications. In the industrial setting, throughput (i.e. flow rate) is often limited by the onset of interfacial instabilities. Here we focus on a core annular flow, which is easy to establish in the lab setting. If the outer lubricating fluid has a yield stress, highly stable multi-layer configurations can be achieved. The outer fluid preserves an unyielded ring about the interface with the core fluid, preventing the growth of interfacial instabilities (see Frigaard, 2001). This flow has been demonstrated experimentally by Huen et al (2007) and is one of relatively few multi-fluid flows known to be nonlinearly stable (see Moyers-Gonzalez et al, 2004).

We present the results of our ongoing and recent work on these flows. First we characterise the entry/start-up flow of the core-annular configuration. Here a Newtonian central fluid is surrounded by a Bingham lubricating fluid. Both fluids are miscible. We show that these flows are achievable with both contraction and expansion inlet geometries. Secondly, we study the temporal stability of the fully developed flow numerically. We show that even for initial perturbations of 50% amplitude and Re O(100), the flow remains stable. For larger perturbations and Re, we can find secondary flow regimes which still have stable unyielded interfaces, but for which mixing has occurred at the interface. Apart from finding temporally stable regimes, we show that the same process can be adapted to produce interesting streamwise-spatially periodic structures. Lastly, we present preliminary experimental results in which we include the effects of visco-elasticity in the core fluid.


Laboratoire Rhéologie et Procédés - 363 rue de la Chimie- Bâtiment B - Domaine Universitaire - BP 53 - 38041 Grenoble cedex 9 - (33) 4 56 52 01 96